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Abstract: In this study, the anomaly analysis of Alzheimer’s disease using positron emission tomog-
raphy (PET) images using an unsupervised proposed adversarial model is investigated. The model
consists of three parts: a parallel-network encoder, which is comprised of a convolutional pipeline
and a dilated convolutional pipeline that extracts global and local features and concatenates them,
a decoder that reconstructs the input image from the obtained feature vector, and a discriminator
that distinguishes if the input image image is real or fake. The hypothesis is that if the proposed
model is trained with only normal brain images, the corresponding construction loss for normal
images should be minimal. However, if the input image belongs to a class that is designated as
an anomaly that which the model is not trained with, then the construction loss will be high. This
will reflect during the anomaly score comparison between the normal and the anomalous image. A
multi-case analysis is performed for three major classes using the Alzheimer’s Disease Neuroimaging
Initiative dataset, Alzheimer’s disease, mild cognitive impairment, and normal control. The base
parallel-encoder network shows better classification accuracy than the benchmark models, and the
proposed model that is built on the parallel model outperforms the benchmark anomaly detection
models. The proposed model gave out 96.03% and 75.21% in classification and area under the curve
score, respectively. Additionally, a qualitative evaluation done by using Fréchet inception distance
gave a better score than the state-of-the-art by three points.

Keywords: computer vision; Alzheimer’s disease; deep learning; anomaly detection; deep adversar-
ial networks

1. Introduction

Alzheimer’s disease (AD) is by far the most common type of dementia, generally seen
in elderly people. For the majority of cases, AD symptoms begin to appear during the
mid-60s, although the early-onset may occur in ages as early as the 30s. It is estimated that
around 106 million people will be diagnosed in the world by 2050 due to the increase in
the aging population [1].

During the progression of AD, the brain structure changes due to the deposition of
amyloid-β (Aβ) plaques and hyperphosphorylated tau. The initial damage starts at the
hippocampus [2], which handles episodic and spatial memory as well as working as a
relay between the brain and the rest of the body, so the damage disrupts these pathways.
The symptoms of AD are the result of these Aβ plaques and intracellular neurofibrillary
tangles [3,4]. This decreases the brain metabolism of both glucose and oxygen, leading
to progressive memory loss and inability to move in the late stages [5]. These changes
start to form years before the initial clinical symptoms of AD are seen. Mild cognitive
impairment (MCI) causes cognitive changes to the person that is noticeable by the family
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members and friends, but the person may still carry out daily activities. It’s been estimated
that 15% to 20% of people over the age of 65 have MCI [6]. Not every case progresses into
dementia; in some individuals, MCI remains stable throughout their lives [7]. The stages of
AD progress can be seen as low-intensity brain cell activity in medical images. Positron
emission tomography (PET) is an imaging technique that uses radiotracers to measure the
metabolic processes, and magnetic resonance imaging (MRI) is another imaging technique
that uses strong magnetic fields, magnetic field gradients, and radio waves. Resting-state
functional magnetic resonance imaging (fMRI) is also considered a promising biomarker;
however, in more severe cases, may cause problems due to the fMRI being very sensitive
to head motion, mitigating its usefulness [8]. PET imaging provides substantially sensitive
assays, easily detecting a very low concentration of molecules of interest labeled through
positron emitters, and MRI suffers from very low molar sensitivity for different metabolites
and probes. This, coupled with the absolute quantification of substrate concentration being
more challenging with MRI, PET imaging is generally chosen for AD imaging [9]. Different
types of nuclear tracers are developed for various purposes to highlight different parts
of the body; some of the radiotracers that are used to detect Aβ plaques in the brain are
florbetapir 18F, flutemetamol F18, PiB, and florbetaben 18F [10]. Unfortunately, at the time
of writing this paper, there is no definite cure for AD, and most of the treatments aim at
alleviating the disease-related symptoms.

Beginning from the early 1970s, multiple computer-aided diagnostics (CAD) systems
were proposed. Their early versions were usually based on manually extracted feature
vectors [11]. Later, these vectors were trained in a supervised method with a machine-
learning model such as a support vector machine (SVM) [12] to classify the input vector. It
was soon realized that there were many shortcomings to such systems [13]. Researchers
turned towards data mining approaches in the 1980 and 1990s to develop more robust and
flexible systems to overcome these limitations.

With the improvements to imaging methodologies, machine learning methodologies
have been proposed to detect AD. These studies generally have multiple steps: feature
extraction, feature selection, dimensionality reduction, and feature-based classification
algorithm selection [14]. The main issue with such works has been the reproducibility
of these approaches [15]. As an example, during the feature selection process, features
that are related to AD are chosen from various modalities which may include cortical
thickness, brain glucose metabolism, subcortical volumes, and cerebral Aβ accumulation
in regions of interest (ROI), such as the hippocampus [16]. Recent works make use of multi
modalities of MRI, PET, and fMRI images, and use various preprocessing techniques such
as segmentation [17] to improve the accuracy of their proposed models [18].

Recent developments in deep learning technology have led to a massive surge of
constantly-improving models, especially in the computer vision area, mainly due to the
improvements brought by convolutional neural networks (CNNs). These models learn
to extract meaningful features from inputs and produce highly accurate results. The
replacement of human experts with automated systems in the near future is being discussed
due to the reduced cost and relatively similar performance [19].

Anomaly detection is defined as the recognition of an unexpected pattern that is
significantly different from the rest of the data. The majority of the challenges include a
proper feature extraction method, imbalance in the data distribution, variance in anomalous
cases, and environmental conditions. In the field of computer vision, anomaly detection
is recently gaining more attention due to the advancements in the machine learning area.
A key handicap with the public datasets is that most of these datasets have an imbalance
among the classes they contain. The bias makes using such datasets difficult, especially
in medical imaging, causing trained models to have less than desired performance [20].
Furthermore, manual labeling of the medical imaging data is a costly and labor-intensive
process, and considering the deep learning models thriving with large amounts of data,
developed systems may end up with limited utility and poor generalization [21]. In such
scenarios, an unsupervised approach to data distribution modeling can be feasible, where
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the majority of the normal case data is used for training, and abnormal case data and
the remainder of the normal case data are used to find outlier cases during the inference.
For a variety of domains [22–24], different approaches to anomaly detection [25–27] have
been proposed in the past. It is generally assumed that the anomalies differ in lower
dimensions as well as in high-dimensional space, meaning the latent space mapping is
a vital point in anomaly detection. Recent studies that include generative adversarial
networks (GANs) [28] in their models are highly effective in mapping the data distribution.
GANs being efficient in mapping both high-dimensional and low-dimensional features
with very little information loss has sparked a new interest in anomaly detection works [29].

In medical imaging, GANs are generally used for AD diagnosis [30], and data gen-
eration to be used in training the deep learning models [31]. Anomaly detection can be
used to differentiate normal brain images and the abnormal brain images is not very well
researched.

In this study, the analysis of Alzheimer’s disease as an anomaly using the proposed
model is researched. In the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset,
there are three classes which are AD, MCI, and normal control (NC). The proposed model
is trained using the unsupervised method. The anomaly analysis is performed on these
classes in the following cases: AD-NC, MCI-NC, AD-MCI, the initial class is the anomaly
class, and the latter class, the normal class. The area under the curve (AUC) is calculated
for each of these comparisons to evaluate the performance of the model, as per previous
work in the field [32,33], as well as Fréchet Inception Distance as a qualitative evaluation.
Contributions of this paper are as follows:

• Novelty—the Alzheimer’s disease anomaly analysis of PET images using a proposed
unsupervised adversarially trained model with a unique feature extractor model.
To the authors’ knowledge, there are no anomaly detection studies in Alzheimer’s
disease cases using adversarial deep learning models.

• Effectiveness—the proposed model quantitatively and qualitatively outperforms the
state-of-the-art models.

2. Related Anomaly Detection Works

For better observation of the changes in the brain caused by AD, there has been a
tremendous effort in the medical imaging field. Multiple machine learning applications
have been proposed to classify different stages of AD using brain images [34–36]. Dif-
ferent imaging techniques such as PET [37,38], structural magnetic resonance imaging
(sMRI) [39,40], functional magnetic resonance imaging (fMRI) [18,41,42] have been used in
AD diagnosis. It has also been shown that multi-modal use may increase the performance
compared to a single modal [43]. For example, using the ADNI dataset, Lie et al. [44]
propose a multi-modality CNN model for binary classification of AD vs. NC with a clas-
sification score of 93.26%. Singh et al. [45] achieved a remarkable 97.37% F1 score with
their proposed method. Various implementations of GANs in medical imaging have also
opened new possibilities from image segmentation [46] to image translation [47].

GANs are a type of generative machine learning framework that includes a generator
that creates realistic images, usually from random noise, and a discriminator that identifies
if the input image is real or fake. The generator is usually a decoder that learns the input
data distribution from the latent vector, and the discriminator generally has a classic
architecture that reads the input image and discriminates fake images from real images.
The comparison between the novel GAN framework and the proposed model can be seen
in Figure 1.

Due to their potential uses, GANs have been examined in great depth [48] and many
approaches have been proposed to improve their stability [49]. A well-known work, called
Deep Convolutional GAN (DCGAN) [50], removes fully-connected layers and makes use
of convolutional layers and batch normalization [51]. With the use of Wasserstein loss, the
performance is improved even further [52].
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(a)

(b)

Figure 1. The comparison between the novel generative adversarial network (GAN) and the proposed
model architecture. (a) GAN takes a random noise as an input, reconstructs the image using a decoder
and the discriminator distinguishes between the normal input image and the reconstructed image.
(b) The proposed model takes a real input image, obtains the latent vector using the embedded
parallel network that is comprised of a conventional convolutional neural network (CNN) pipeline,
and a dilated convolutional neural network (DCN) pipeline, and reconstructs the image. The
discriminator then distinguishes between the normal input image and the reconstructed image. More
detailed information about the proposed model can be found in Section 3 and the details of the
proposed architecture can be seen in Figure 2. (a) The novel GAN architecture. The input is a random
noise vector that is built into an image with the generator. The constructed image and a real image
from the dataset are then fed to the discriminator where they can be classified as real or fake. (b) The
proposed model architecture. The input is an actual image that is sent through the parallel network
to generate a latent vector which will then be used to reconstruct the image. This reconstructed image
and the corresponding real image are fed to the discriminator where the discrimination between the
real and the fake image can be made.

Recent attention on anomaly detection tends to be reconstruction-based. One study
from Ravanbaksh et al. [53] takes advantage of image-to-image translation [54] to detect
abnormality in crowded scenes. The approach uses two conditional-GANs; the first
generator constructs an optical flow from input frames, and the second one generates
frames from the generated flow. The main breakthrough comes from Schlegl et al.’s
work [23] where it is hypothesized that the end latent vector is a direct representation
of the data distribution; however, mapping it is not a straightforward process. The first
step is training a generator and a discriminator using only normal images, and afterward,
remapping to the latent vector by freezing the weights based on the z vector. The model
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shows the anomaly score during the inference by pinpointing an anomaly. Furthering this
study, Zenati et al. [32] (EGBAD) uses BiGAN [55], examining joint training to map the data
distribution end from the image and latent space, respectively. Akcay et al. [29] propose
the use of a conventional autoencoder (GANomaly) with the addition of another encoder
the decoder to jointly train the model and the discriminator with the additional latent space
loss. Furthering their work, Akcay et al. [56] propose a U-Net-like [57] autoencoder model
(Skip-GANomaly) with skip-connections trained jointly with a discriminator.

Figure 2. The architecture of the proposed model. The encoder part of the generator G is built on a
unique parallel model that is capable of extracting local features from an input image x through the
convolutional neural network (CNN), and global features through the DCN. Concatenation of these
features z is used as the input for the generator which in turn reconstructs the original input image as
x̂. The discriminator D is an encoder that inputs both the original and the reconstructed image and
outputs a class label if the image is real or fake. Its fully connected layer ẑ is also used as a part of the
main loss function during training.

The human brain has a structure with many unique features that can be extracted
by different CNN models. However, the majority of the works focus on creating a single
complicated pipeline to extract these features. This study uses a parallel model that has
been proven [58] to extract more features than a single pipeline, which are reflected in its
class activation maps during the inference. Furthermore, while the conventional GANs
generate images from random input noise, the proposed model generates images from an
input brain image, resulting in more realistic images. The findings of the experiment are
explained and shown in the following sections.

3. Proposed Model

The proposed model uses an unsupervised adversarial training scheme. It has two
major components:

• The generator (G) learns the dataset distribution from the input image, encodes it into
a latent vector, and reconstructs the image by upsampling. The uniqueness of the
generator is that the encoder uses a parallel model that is comprised of a convolutional
pipeline (CNN) and a dilated convolutional end network (DCN) that is 8 layers deep,
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each layer uses 3× 3 convolutional filters, a Rectified linear unit (ReLU) activation
function, and a batch normalization operation. After two identical layers, a max-
pooling operation is used for spatial dimension reduction and doubling the depth of
the tensor. A latent vector of the input image is then generated.
The DCN is eight layers deep, each layer uses 3 × 3 convolutional filters with a
dilation factor of 2, a ReLU (Rectified linear units) activation function, and a batch
normalization operation. After 2 identical layers, a max-pooling operation is used for
spatial dimension reduction and increasing the depth of the tensor. A latent vector of
the input image is then generated. Concatenation of these features gives the optimal
feature vector of the input image [58]. The class activation map for the given input
image is shown in Figure 3.

• The discriminator (D) predicts the class of the input (whether it is fake or not) based
on learned features. The discriminator generally uses an encoder-type architecture.

The mathematical definition and the formulation of the problem are the following:
The dataset is split into a training set D that is comprised of N normal images where
D = {x1, . . . , xN}, and a testing set D̂ of A normal and abnormal images combined
D̂ = {X̂1, y1), (X̂2, y2), . . . , (X̂A, yA)} where yA ∈ [0, 1] denotes normal and abnormal
class labels, respectively. The task is training the proposed model f on D and perform infer-
ence on A. Ideally, the training set should be larger than the training set, D� A. Training
helps to map the distribution of the dataset D in all vector spaces. This enables the network
to learn both higher and lower-level features that are different from abnormal samples.

As shown in Figure 2, the proposed model consists of a generator G and a discrimina-
tor D. The generator uses an autoencoder-type structure to generate an image x̂ through
extracted latent vector z from the input image x such that G : x → z where x ∈ R(w×h×c)

and z ∈ Rd. The input image x is fed to both pipelines where the conventional CNN
extracts local features and the DCN extracts global features. Concatenation of these features
creates the latent vector z. The convolutional network pipeline consists of eight convo-
lutional layers, each layer is created using 3× 3 convolutional filters, a ReLU activation,
and a batch normalization operation. The DCN consists of 8 dilated convolutional layers
with each layer being comprised of a 3× 3 convolutional filters with a dilation factor of
2, a ReLU activation, and a batch normalization operation. At the end of each pipeline,
extracted image features are concatenated to the create the latent vector to z.

The decoder network consists of four upsampling layers and eight convolutional
layers with 3× 3 convolutional filters on each layer, and a ReLU activation. Its task is to
upsample the latent vector z back to its original input image dimension which is denoted
as x̂.

Unsupervised training is performed with the majority of the normal class in the
proposed GAN-based anomaly detection. In all three cases, the train-test split is the same.
Eighty percent of the NC data is used to train the model, and the remaining 20% is used
together with a similar number of AD images to detect the AD as the anomaly, or MCI
as the anomaly with the NC, or the AD as the anomaly with the MCI dataset. The model
is trained with only MCI data to distinguish AD, and MCI and AD data are considered
abnormal data.
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(a) Class activation maps for a single Alzheimer’s Disease (AD) image. The left
2 × 2 block shows the CNN activations, and the right 2 × 2 block shows the
DCN activations.

(b) Class activation maps for a single Mild Cognitive Impairment (MCI) image.
The left 2× 2 block shows the CNN activations, and the right 2× 2 block shows
the DCN activations.

(c) Class activation maps for a single NC image. The left 2× 2 block shows the
CNN activations, and the right 2× 2 block shows the DCN activations.

Figure 3. Class activation maps of all three classes; (a) AD, (b) MCI, and (c) NC. Despite the CNN
in all cases cover a larger activation area, the activation values are lower than the DCN activations.
Furthermore, it can be seen that the class activation maps highlight the different parts of the brain.

4. Experimental Environment and Results
4.1. The Dataset

The dataset used in this study was obtained from ADNI (http://adni.loni.usc.edu)
(accessed on 22 December 2020). The ADNI study contains AD, MCI, and NC subjects and
its main purpose is to establish clinical, imaging, biochemical, and genetic markers for the
early detection of AD. For this study, participants with baseline, plus a-year follow-up 18F-
fluorodeoxyglucose (FDG)-PET images were used. Of 256 subjects in total, there are 148
NC subjects, 83 MCI subjects, and 25 AD subjects. Demographic and clinical information
(Clinical Dementia Rating—CRD, Mini-Mental State Examination—MMSE) is shown in
Table 1. For the training stage, the normal class dataset is split 80-20% for training and
inference (e.g., AD vs NC, MCI vs NC, AD vs MCI). One hundred percent of the abnormal
class is used for inference, meaning, the model is not trained with the abnormal class.

http://adni.loni.usc.edu
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The detailed information about the dataset split and the numbers can be seen in Table
2. Each patient’s axial scan has 96 images, and each image is grayscale has the size of
160× 160 pixels. The images were downscaled to 64× 64 to reduce the computational cost.

Table 1. The clinical information and the demographic of the population (mean± standard deviation).

Group NC MCI AD Total

No. of subjects 148 83 25 256
Gender (M/F) 82/66 45/38 15/10
No. of Images 14,208 7968 2400 24,576

Age, mean ± SD 75.9 ± 4.5 74.8 ± 7.1 76.5 ± 6.7
CDR, mean ± SD 0.0 ± 0.0 0.5 ± 0.0 0.8 ± 0.2

MMSE, mean ± SD 29.1 ± 1.0 27.2 ± 1.6 23.4 ± 2.0

Table 2. The information about the train-test split for three cases. In training the case, 80% of the
normal class data is split and the proposed model is trained with it. The remaining 20% is mixed
with the corresponding abnormal class. The number of abnormal class data is either the same as the
normal class or the highest possible number of usable images.

Training Testing Total

Cases AD MCI NC AD MCI NC

AD-NC 11,366 2400 2842 16,608
MCI-NC 11,366 2842 2842 17,050
AD-MCI 6374 2400 1594 10,368

4.2. Training the Model

The recent trend of anomaly detection models such as skip-GAN [56] and Anoma-
lyGAN (AnoGAN) [23] is to train the model on the normal dataset by separating it into
train-test fashion, and then perform inference with both unseen normal and unseen abnor-
mal samples. Ideally, normal sample inference images will have similar latent vectors and
the reconstructed image will be similar to the input image. On the other hand, abnormal
samples that the model has not been trained for are expected to fail in both cases. A higher
loss value can be expected in such cases, which will be used for anomaly score calculation.
In case of training, the proposed model has three loss functions for optimization which are
contextual loss, latent vector loss, and adversarial loss.

1. Contextual Loss: To learn the distribution of the dataset, L1 normalization is applied
to the input x and the output x̂. This helps the generation of contextually similar
images from the normal samples and is proven to produce less blurry images than L2
normalization [54]. The loss formula is given below as:

Lcontext = Ex∼px |x− x̂|1. (1)

2. Adversarial Loss: Taken from [28], this loss ensures that the generator G can recon-
struct an image x as realistically as possible while the discriminator D can differentiate
between the normal and fake images. The task is to minimize this objective for G and
maximize it for D to achieve the min-max equilibrium L1 where it is defined as:

Ladv = Ex∼px [logD(x)] + Ex∼px [log(1−D(x̂)]. (2)

3. Latent Loss: This L2 loss is used in obtaining the latent representations of the input x
and the generated output x̂ as similar as possible. This ensures that the network can
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produce similar latent representations for sampling. Using the concatenated features
z = f(x) and the fully connected layer of the discriminator ẑ = f(x̂). The loss becomes:

Llatent = Ex∼px | f (x)− f (x̂)|2. (3)

Thus, the total loss of the model becomes:

Ltotal = Lcontext + Ladv + Llatent. (4)

For training the proposed model f, stochastic gradient descent (SGD) with lambda
decay, and Nesterov momentum optimizer function with the initial learning rate 10−2 is
used. The model is trained until the convergence, which took 60 epochs. To perform a
patient-wise training and inference, the batch size is taken as 96 which is the total number
of axial brain images of a single patient. Same hyperparameters were used to train the
benchmark models and the ablation study, with the same dataset, and the same 80-20%
split. The implementation is done using TensorFlow v2.0, Python 3.6.8, CUDA 10.0, and
CuDNN 7.6.5. The experiments are conducted on an NVIDIA P5000 GPU.

4.3. Model Evaluation

Model performance is evaluated through multiple methods. First, a classification
inference is performed with the parallel model to check whether the parallel encoder
module is working accurately. Trained parallel model weights are frozen, a classification
layer (softmax) is added, and fine-tuning is performed with the same training hyper-
parameters, with the categorical cross-entropy loss. Same hyperparameters are used to
train the benchmark classification models. The benchmark result with other classification
models is given in Table 3, and the confusion matrix of the parallel model can be seen in
Figure 4.

Figure 4. Confusion matrix for the parallel model inference. The confusion matrix is drawn with the
results from the inference using true labels and the model’s predicted labels.

Class activation maps are helpful to highlight the regions where the model’s attention
is focused on in data visualization. These regions shown in Figure 3 are relevant to each
different class. Thus, the greater the variance between these regions is, the more accurate
the model performs. Looking at the model’s class activation maps, both CNN and DCN
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activation areas are complementary to each other in a given brain image. The four activation
images on the left-hand side are from the CNN, whereas the four activation images on the
right-hand side are from the DCN. Although the DCN has a lower activation area overall,
the values in these areas are higher than the CNN activation values, indicating that the
DCN features are distinct and unique.

Table 3. Classification performance comparison between image classification models such as
DenseNet169, Inception-V3, ResNet50, VGG16, and the parallel model.

Performance Accuracy Precision Recall F1-Score

Parallel Model 96.03 95.70 93.73 94.67
DenseNet169 [59] 95.44 93.98 92.31 94.20
Inception-V3 [60] 90.06 88.73 87.12 89.44

ResNet50 [61] 89.41 86.81 87.29 88.52
VGG16 [62] 85.13 83.98 82.31 85.01

The second evaluation method is the area under the curve (AUC) [63]. It is a function
that uses true positive rates (TPR) and false-positive rates (FPR) with varying threshold
values from the inference data.

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

(5)

where TP is a true positive, FN is a false negative, FP is a false positive, and TN is a true
negative. The model’s performance is compared with recent anomaly detection works such
as GANomaly [29], Skip-GANomaly [56], EGBAD [32], and AnoGAN [23]. Additionally, an
ablation study is performed on CNN pipeline and DCN pipeline networks. The comparison
can be seen in Table 4.

Table 4. Area under the curve (AUC) results of benchmark models GANomaly, EGBAD, AnoGAN,
Skip-GAN, and ablation study of the proposed model, and the proposed model itself.

Model AD-NC MCI-NC AD-MCI

GANomaly [29] 59.31 57.33 48.34
EGBAD [32] 58.46 60.31 54.71

AnoGAN [23] 55.71 52.93 48.11
Skip-GANomaly [56] 71.42 67.02 68.56

Ablation-Conv. 68.71 65.34 61.25
Ablation-Dilated Conv. 60.82 54.02 52.40

Proposed Model 75.21 70.84 71.85

A qualitative evaluation method called Fréchet Inception Distance (FID) [64] is ap-
plied as a metric. This method is used to evaluate the quality of the generated images
by calculating the distance of feature vectors between the real and the generated images.
The estimation is done via the Inception-V3 [60] model which was built on the original
GoogLeNet architecture [65] classifies the generated image. The conditional class probabil-
ity and the confidence of each image are combined. This is defined as [64]:

FID = |µr − µg|2 + Tr(∑
r
+∑

g
−2(∑

r
∑

r
∑
g
)
−1/2

) (6)

where Xr ∼ N(µr, ∑r) and Xg ∼ N(µg, ∑g) are 2048-dimensional activations of the pool3
layer for real and generated samples. If both images are identical, the score should ide-
ally be 0. Since there is no clear given metric value that is acceptable for unsupervised
learning in the literature, there might be problems with what the acceptable value. A total
of 1000 constructed images gathered from each class were compared with the correspond-
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ing 1000 real images to obtain an FID score for each class separately. The score comparison
for different classes and models can be seen in Table 5 and reconstructed sample images
for all cases and the ablation study results can be seen in Figure 5.

Table 5. Fréchet Inception Distance (FID) scores comparison for three different classes; AD, MCI, and
NC using GANomaly, Skip-GANomaly, EGBAD, and AnoGAN along with the ablation study. Note
that a lower score generally means better performance.

Models AD MCI NC

GANomaly [29] 18.216 17.353 17.885
EGBAD [32] 20.815 21.621 19.134
AnoGan [23] 19.908 17.991 21.759

Skip-GANomaly [56] 11.892 12.516 11.908
Ablation Conv. 16.175 18.023 17.659

Ablation Dilated Conv. 21.762 18.895 21.342
Proposed Model 9.481 10.024 10.858

(a)

(b)

(c)

Figure 5. 9 original images for each class AD (a), MCI (b), and NC (c), respectively. (1) The original
image, (2) the reconstructed image by the proposed model, (3) the CNN reconstruction, and (4) the
DCN reconstruction images are given. (a) An original batch of AD images and the reconstructed
counterparts by the proposed model and its sub-networks. (b) An original batch of MCI images and
the reconstructed counterparts by the proposed model and its sub-networks. (c) An original batch of
NC images and the reconstructed counterparts by the proposed model and its sub-networks.
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An anomaly score [32] is used to detect the anomalies in a given test image. For an
input image ẋ the corresponding anomaly score is calculated as:

A(ẋ) = (1− λ) · R(ẋ) + λ ·D(ẋ) (7)

where R(ẋ) is the L1 loss between the input image and the corresponding reconstructed
image. D(ẋ) is the latent vector score given in Equation (3). λ is the weighting parameter
on emphasizing the importance of the scores. This experiment was performed based on
λ = 0.5. The anomaly scores were then normalized. The anomaly score comparison for
three different scenarios with the frequency graphs are shown in Figure 6.

(a)

(b)

Figure 6. Cont.
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(c)

Figure 6. Anomaly score distributions for test images. Note that the anomaly scores are normalized
to [0, 1], and the images with higher anomaly scores are reflected with values closer to 1 while the
normal images are closer to 0. (a) AD-NC case. AD is considered the anomaly, which reflects a higher
anomaly score in the distribution. (b) MCI-NC case. MCI is considered the anomaly, which reflects a
higher anomaly score in the distribution. (c) AD-MCI case. AD is considered the anomaly, which
reflects a higher anomaly score in the distribution.

5. Conclusions

In this work, an analysis of Alzheimer’s Disease as an anomaly in PET images using an
unsupervised anomaly detection model featuring a parallel feature extractor is conducted.
The parallel feature extractor consists of a CNN and a DCN. Latent vectors obtained from
both pipelines are concatenated and used as the main feature vector to reconstruct the
input image. The discriminator takes both the original input image and the reconstructed
image as input and labels them as either real or fake. As it is shown in Tables 4 and 5,
the proposed model outperforms the previous anomaly models both quantitatively and
qualitatively by having a classification accuracy of 96.03%, 0.59% higher than DenseNet169,
and an AUC score of 75.21%, 3.79% higher than Skip-GANomaly. The ablation study
shows that the proposed model also outperforms ablation study sub-networks. The narrow
activation areas with high values seen in the DCN class activation maps provide a boosting
effect to the CNN’s wider, but much lower value areas. The justification of the superior
performance in the classification of the parallel feature extractor model is given in Table 3
and the proof is given in the form of class activation maps, as shown in Figure 3. Although
there are no solid metric values of the optimal performance for the unsupervised models,
comparison based on the FID score shows that the model produces images similar to the
real ones.The score comparisons are given in Table 5, and a sample batch of images is
shown in Figure 5. There are multiple discussions to be made in future studies:

• Among the three loss functions, the importance of each loss function can be evaluated.
A genetic algorithm or a grid search can be used to assign weights for each loss
function to observe its effect on the model.

• The depth of the parallel model can be altered by using other parameter search
algorithms. A deeper model may increase the computational cost while improving the
accuracy.

• The skip connections used in autoencoders have been showing promising results [57].
The possibility and feasibility of skip connections will be investigated to further
improve the performance of the model.

• Probable ways to improve the AUC score further will be investigated.
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CDR Clinical Dementia Rating
GANs Generative Adversarial Networks
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sMRI structural Magnetic Resonance Imaging
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CNN Convolutional Neural Network
ReLU Rectified Linear Units
ROI Region of Interest
DCN Dilated Convolutional Network
AUC Area Under the Curve
FID Fréchet Inception Distance
FPR False Positive Rate
TPR True Positive Rate
SVM Support Vector Machine
SGD Stochastic Gradient Descent
ADNI Alzheimer’s Disease Neuroimaging Initiative
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